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Abstract-The paper proposes a conceptually new method for thermal insulation system optimization. 
The method, based on minimizing thermodynamic irreversibility, consists of externally controlling the 
variation of heat leak with temperature across the insulation. It is demonstrated that the useful power 
savings registered from applying this design philosophy are important. Prime candidates for this method 
are insulation systems facing high absolute temperature ratios and insulation systems in which the 
effective thermal conductivity increases with the absolute temperature. Three classes of thermal insulation 
systems are optimized based on this universal design procedure: one-dimensional continuous insulations, 
insulations with discontinuous temperature distribution and continuous insulations with internal heat 

generation. 

NOMENCLATURE 

insulation area; 

electrical resistivity constant ; 
specific heat at constant pressure; 
factor, equation (26); 
radiation shield position ; 
electrical current ; 
effective thermal conductivity; 
constant effective thermal conductivity; 
mass flowrate; 
exponent, equation (19) ; 
number of gaps between radiation shields ; 
wetted perimeter; 
heat leak function ; 
intermediate heat exchange function ; 
rate of entropy generation ; 
insulation thickness (heat leak path 
length); 
absolute temperature; 
environment temperature; 
low temperature; 
high temperature ; 
radiation shield temperature; 
temperature difference, equation (21); 

overall heat-transfer coefficient, 
equation (23); 
transversal coordinate. 

Greek symbols 

I., A, Lagrange multipliers ; 
P? electrical resistivity ; 
c, Boltzmann’s constant; 

*7 ratio of absolute temperatures, T,/T, ; 
@) 

@‘,’ 

optimum shield temperature, T$,‘,/T, ; 

integral, equations (6) and (36). 

Superscript 
* insulation design with q = constant. 

Subscripts 

min, minimum ; 
opt, optimum. 

1. INTRODUCTION 

THERMAL insulation is perhaps the simplest system 

encountered in thermal design. From the point of 
view of most designers, the basic function of thermal 
insulation is to limit the flow of heat between two 
neighboring surfaces at different temperatures. This 
is a first law point of view which is accepted widely, 
as demonstrated by almost anything written or 
taught on the subject. 

An alternative way of looking at thermal in- 

sulation systems is presented in Fig. l(a). Thermal 
insulations are in essence dissipators of useful 
mechanical power for one can always envision 
putting the insulation temperature difference to 
work. It will be demonstrated that as the ratio of 
absolute temperatures bordering the insulation in- 
creases, one cannot afford to neglect the dissipative 
effect distributed throughout the insulation. It will 
also be demonstrated that the use of second law 
concepts is in fact a surprisingly simple and powerful 
analytical approach to decisions in thermal design. 

The objective of this work is to propose a general 
optimization philosophy for thermal insulation sys- 
tems. The method relies on the second law of 
thermodynamics and its related concept, irreversi- 
bility or entropy generation. This work will show 
that there are two ways in which the performance of 
an insulation system can be improved. The first is the 
traditional approach which consists of decreasing the 
thermal conductance or the heat leak penetrating the 
insulation. The second approach is novel and applies 
to an insulation system whose thermal conductance 
is fixed,’ i.e. it has already been reduced to the lowest 
value acceptable economically. This approach con- 
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FIG. 1. Schematic of one-dimensional thermal insulation system showing internal dissipation of mechanical power and 
entropy generation analysis. 

sists of controlling the temperature variation of heat 
leak across the insulation, by cooling or even heating 
the insulation at intermediate temperatures. The 
objective of this paper is to demonstrate the second 
approach. 

As a summary to what follows, in Section 2 we 
consider the optimum design of one-dimensional 
continuous insulations. The bulk of the paper is 
devoted to demonstrating the general applicability of 

the design philosophy proposed in Section 1. In 
Sections 3 and 4 we apply the same method to 
insulations with discontinuous temperature distri- 
bution and insulations with internal heat generation, 
respectively. The potential savings in useful power 
derived from implementing this design philosophy 
are critically assessed. 

2. ONE-DIMENSIONAL CONTINUOUS INSULATIONS 

Insulation irreversibility (entropy generation) 
Consider the one-djmensional thermal insulation 

system of Fig. l(b). A layer of thickness t and cross- 
sectional area A separates two parallel surfaces with 
different absolute temperatures, T,, T’. The tempera- 
ture varies continuously across the insulation. In any 
plane X, the heat current q is proportional to the 
local temperature gradient and an effective thermal 
conductivity factor k, 

,=4,,2 
ds ’ 

(1) 

where k may be temperature-dependent. 
The temperature T of any length segment dx- is 

controlled externally by placing the insulation seg- 
ment in local thermal equilibrium with the T end of 
a reversible (Carnot) device operating between T 
and T1, The dx- segment and the reversible device 
exchange heat at a rate dr. This heat-transfer process 
is reversible since the ds segment and the device 

adjacent to it are at the same temperature. We show 
later that in practical energy systems the lateral heat- 

transfer effect dr may be accomplished by placing the 
insulation in local thermal equilibrium with the 

warm end or the cold end of power or refrigeration 
cycles built into the system to be insulated, as 
sketched on Fig. 3. 

Under these circumstances, the heat flow 4 
through the shaded element of Fig. i(b) is the only 
source of thermodynamic irreversibility since it 
occurs across a finite temperature difference dT The 
local rate of entropy generation in the element is [I]. 

Expression (2) is the result of an entropy flux 
analysis of the shaded element, taking into account 
that 

dq = dr, (3) 
based on the first law of thermodynamics. The total 
rate of entropy generation in the one-dimensional 
insulation of Fig. I(b) is obtained by integrating 
expression (2) over the temperature interval occupied 

by the insulation, 

S,,,, = (4) 

Integral (4) is a quantitative measure of the 
insulation irreversibility, stating how imperfect the 
insulation is as a thermodynamic system. If TO is the 
environment temperature, then the product ToSren 
represents the share of useful mechanical power 
dissipated (wasted) due to insulation irreversibility 
[2,3]. It is important to minimize the rate of entropy 
generation, particularly in insulation systems as- 
sociated with large scale power plants and re- 
frigeration systems where the power savings derived 
from a reduced SBrn are significant. 
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Minimization of irreversibility in insuLztions with fixed 

geometry 
We will now consider techniques for reducing the 

insulation irreversibility. There are a few ways in 

which this can be accomplished, the immediately 
obvious being suggested by equation (1). Increasing 
the layer thickness (t) and/or decreasing the effective 
conductivity of the insulating material (k) leads to a 
smaller heat current (q) and, based on equation (4), a 
better insulation (lower rate of entropy generation). 
This method is effective in its own right and 

motivates the continuing quest for inexpensive low 
thermal conductivity materials and low heat thermal 
insulation systems, particularly for low temperature 
applications [4]. 

A more subtle way of minimizing Sgen applies to 
insulations of fixed geometry and constitution, i.e. 
systems in which the thermal resistance to transverse 
heat transfer has already been increased to the limit 
imposed by economic considerations. Consider, for 
example, the system of Fig. 1 b with k, t and A fixed. 
Analytically, the fixed geometry condition can be 
expressed as an integral constraint obtained by 
rearranging and integrating equation (1). 

t -= 
i 
wJdT. 

A ,*7‘, q(T) 
(5) 

Constraint (5) takes into account the fact that, due 
to the heat transfer interaction dr with the Carnot 
device, the local heat leak q may vary with the 
absolute temperature. It is the local heat transfer dr 
which provides the additional degree of freedom 
for being able to change q(T) and S,,, in an 

insulation of fixed identity. 
We are interested in deriving the optimum heat 

current distribution q,,,,, (T) which minimizes the Sgrn 
integral (4) subject to the integral constraint (5). This 
is an interesting variational problem which consists 
of finding the function q(T) which minimizes the 
integral 

where J is a Lagrange multiplier. Employing the 
calculus of variations, the integral of equation (6) is 
minimized if the unknown function q(T) satisfies the 
Euler equation for an extremal [5] 

1 Ak 
T-7=0. 
q q 

(7) 

The optimum distribution of heat current, q,,,, found 
by solving equation (7) depends on 2. The Lagrange 
multiplier is finally identified by substituting 
q”,,, (7; A) into constraint (5) and solving the resulting 
equation in 1. Thus, we obtain 

The variational result (8) proves that in order to 
further optimize a thermal insulation system of fixed 
geometry one has to monitor the heat leak variation 

with temperature. A system or the traditional type 
with constant q across the insulating layer is not 

necessarily the best. Depending on the k(T) function, 

it may be necessary to either cool (dr>O) or, in 
exceptional cases, even heat (dr ~0) the insulation at 
intermediate temperatures in order to approach the 
optimum prescribed by equation (8). 

Combining qO,,(T) with equation (1) one can 
determine the optimum temperature distribution 
across the insulation, T,,,(x). Similarly, the optimum 
distribution of heat removal effect r,,,(T) can be 
derived by combining these results with equation (3). 
It is also possible to estimate the minimum reached 

by &en when q E q,,,: 

Integral (9) can be carried out explicitly as soon as 
the insulation system is specified and function k(T) 

becomes known. 

Insulations with controlled distribution qfheat leak 

Here we point out the practical implications of the 
design principle developed above. Consider the case 
where the thermal conductivity is constant k = k,. 

Applying the optimum (8), the best insulation system 
design is described by 

(10) 

(11) 

(12) 

(13) 

We find that the optimum design is characterized by 
a heat leak q which decreases linearly with the 
decreasing local absolute temperature. The optimum 
distribution qop, (T) is achieved by removing a 
constant share of q at each temperature interval as 
shown in equation (13). 

It is interesting to compare the best design 
(lo)-( 13) with the case in which no lateral cooling dr 
is being provided as in all systems traditionally 
designed for the lowest achievable heat leak. The 
traditional design, indicated here with an asterisk, is 

q* = +(T,-T,), 

T* = T, ++T,), (16) 

r* = 0. (17) 

Dividing equations (15) and (11) side by side we 
obtain a relative measure of how inferior design 
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(14))(17) is with respect to the optimum (lo)-(13), 

S&” I t-l z _=_ ~ 
S”‘” 
so i 1 r lnt, 

In equation (18) t is the absolute temperature ratio 
T,/T,. Expression (18) is shown as the n = 0 curve 
on Fig. 2. We see that only in the limit t+l the 
constant q system performs as well as the optimum. 
Its performance deteriorates considerably as the 
temperature ratio r exceeds 10. 

r(T) is the only approach to a better thermal 
performance only in the limit t-+1. As soon as the 
temperature difference (T, - T, ) is of the same order 
of magnitude or greater than T,, the thermodynamic 
performance of a given insulation (fixed Ak,/t) can 
be improved substantially by appropriately control- 
ling the local heat leak dependence on absolute 
temperature, q(T). 

Figure 2 is a comparison of only one practical 

design (q = constant) with the theoretical optimum 

s* w 

7 = T,/T, 

FIG 2. Relative magnitude of “constant q” system irreversibility for various values of n and T (equation 20). 

The ratio S,,,/STCi; is similar to the notion of 
number of entropy generation units N, introduced 
by this author in the design of heat exchangers [6,7] 
and energy storage units [S]. This dimensionless 
parameter shows the relative position of a particular 
design with respect to the best possible design (i.e. 
the least irreversible design). 

In many applications, the effective conductivity 
k(T) obeys a power law-type relationship over the 
temperature range covered by the insulation. 

k s k, f’. (19) 

In such cases the more general form of equation (I 8) 
becomes 

S&” n2 (t-l)(P-1) 
p= 
SF;: 4(n+ 1) 7(@ - 1y 

(20) 

which is also plotted on Fig. 2 for different values of 
n. One can easily show that the constant q design 
coincides with the optimum when II = -2; this is 
also evident from examining equation (8). 

In conclusion, decreasing the thermal conductance 
Ak,/t without providing intermediate heat transfer 

developed in the preceding paragraphs. As illustrated 
by the variational approach to determining the 
optimum design, there exists an infinity of designs in 
which q(T) may or may not come close to q,,,(T). 

The ability of achieving a heat leak distribution q(T) 

which closely resembles q,,,(T) depends on the 
amount and distribution of lateral heat-transfer effect 

r(T). 
Figure 3 is a schematic representation of the 

thermodynamic concept behind the intermediate 
cooling/heating effect. Large scale insulation systems 
are most indispensable when used in association with 
applications at very high temperatures (power 
plants) and very low temperatures (cryogenic re- 
frigeration systems). The r(T) effect is the result of 
placing the insulation in communication with por- 
tions of the power/refrigeration cycle. Depending on 
whether r(T) represents cooling or heating, the 
insulation serves as heat source or heat sink for the 
thermodynamic cycle. Therefore, to be truly opti- 
mized, the insulation must become an integral part 
of the power or refrigeration cycle. 
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FIG. 3. Thermodynamic basis for intermediate heat exchange effect: design of insulation in harmony with the 

central system being insulated. 

The main conclusion to be drawn from Fig. 3 is 
that an insulation system facing a severe temperature 
ratio (T >> 1) must be optimized in harmony with the 
system it insulates. The distributed heat exchange 
effect r(T) is the connection between the insulated 
system and its insulation. 

Examples 
It is appropriate to complete this section with two 

examples of continuous one-dimensional insulation 
systems whose performance is improved significantly 
by applying the design principle presented here. The 
purpose of these examples is to show that the task of 
thermodynamically connecting the insulation with 
the insulated system is possible. It is shown also that 
the present design philosophy is actually being used 
in isolated instances, although it is not being 
recognized as a generally valid systematic approach 
to optimizing any thermal insulation system. 

1. As a first example, consider the class of 
mechanical supports which span a large temperature 
difference, a case considered by Bejan and Smith [9] 
and Bejan [lo] in the context of supports for 
cryogenic apparata. The mechanical supports of a 
very hot or a very cold apparatus conduct heat 
between the apparatus and its environment. The heat 
leak can be reduced by decreasing the A/t ratio to 
the point where the supports are too slender to 
perform their mechanical function properly. Beyond 
this point one has to rely on the present method to 
further upgrade the insulation performance. 

For a wide range of construction materials k(T) 
increases with the increasing temperature so that, in 
equations (19), (20) and Fig. 2, n is of the order of one. 

The savings in useful power resulting from cooling 
the support at intermediate temperatures are dra- 
matic, expecially in the case of cryogenic supports for 
which t is of the order of 100. This technique is 
becoming popular in cryogenic engineering where it 
is implemented approximately, by allowing a stream 
of cold helium gas to flow along the support toward 
the warm end. In the process, the gas stream 
gradually intercepts a major portion of the heat leak 
conducted by the support. The cooling effect pro- 
vided by the gas stream approximates satisfactorily 
the optimum required by equation (8) [9, lo]. 

2. As a second example, consider the counterflow 
heat exchanger shown in Fig. 4. A good counterflow 
heat exchanger is an excellent insulation system in 
the hot end (T,)-cold end (Ti) direction by 
promoting heat transfer internally, in the stream-to- 
stream direction. An entropy flux analysis around 

the shaded element of Fig. 4 yields the local rate of 
entropy generation 

dS,,, = tic, In T+dT 
T 

+ tic, In 
T+AT 

T+AT+dT 
(21) 

ic,AT dT 
- 

= 1 +ATIT T2 

where AT is the temperature difference between 
streams. Expression (21) is based on the assumption 
of balanced ideal gas streams and zero pressure drop 
in the heat exchanger passages. Comparing this 
result with the general formula (2) demonstrates that 
the group tic, AT/( 1 + AT/T) plays exactly the same 
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FIG. 4. Analogy between a counterflow heat exchanger and 

a one-dimensional thermal insulation system. 

role as the heat leak q in an insulation system. 
Therefore, for a counterflow heat exchanger 

tic,AT 

’ = 1 +AT/T 

The effective thermal conductance for the longi- 
tudinal heat leak (22) is determined using the heat 

exchanger design relation [ 1 l] 

mc,dT = UPATdx (23) 

where dx is the heat exchanger length element 
corresponding to d7; P is the perimeter wetted by 
one of the streams and U is the overall coefficient for 
stream-to-stream heat transfer based on P. Eliminat- 
ing AT between expressions (22) and (23) and 
observing that, in general, AT<< T yields 

q = (tic,)* dT --. 
UP dx 

Therefore, (tic,)*/(UP) is the equivalent of (kA) used 
in the general treatment of one-dimensional con- 
tinuous insulations. The length of the heat ex- 
changer, t, plays the role of insulation thickness. The 
longitudinal heat leak is inversely proportional to 
the heat-transfer area Pt, and so is the heat 
exchanger irreversibility. 

The general conclusions reached earlier in this 
section apply to counterflow heat exchangers. This 
type of insulation is improved first by increasing the 
heat-transfer area Pt. When this approach is no 
longer feasible economically, intermediate cooling 
can further improve the thermodynamic perform- 
ance. In many applications, the effective con- 
ductance (hc,)2/UPt is relatively insensitive to 

temperature changes, hence, the effective conduc- 
tivity k is constant. Consequently, the variational 
principle (8) recommends a uniform intermediate 
cooling effect so that q becomes proportional to the 
absolute temperature or according to relation (22) 
AT/T = constant. This conclusion is in good agree- 
ment with the practice of cooling at intermediate 
temperatures the counterflow heat exchangers of 
helium liquefaction plants [12, 131. The variational 
principle presented here provides a foundation for 
this procedure. In high temperature applications 
such as the regenerative heat exchanger for a 
Brayton cycle heat engine, the temperature ratio t 
may be too low to make the use of intermediate 
cooling profitable (see, for example, the n = 0 curve 
at 7 G 4 on Fig. 2). 

3. DISCONTINUOUS INSULATIONS 

In this section we consider insulations whose 

temperature varies discontinuously from T, to T,. 
Radiation shielding is a prime example of an 
insulation with discrete temperature distribution. 

Imagine an insulation system consisting of (N-l) 
radiation shields suspended in the evacuated space 
separating T, and T2. If the number of radiation 
shields is very large, the insulation may be regarded 
as continuous and the design principle developed in 
the preceding section applies unchanged. If the 
number of shields is small so that the temperature 

varies appreciably between two adjacent shields, the 
variational principle (8) does not apply and has to be 
replaced with a similar principle valid for discon- 
tinuous insulations. 

Consider the ith compartment separating two 
shields at temperatures T(i) and T(i-I) with a net 
radiant heat-transfer rate qi. Calculating the rate of 
entropy generation in this compartment and sum- 
ming up over all N compartments yields 

(25) 

The heat current qi depends on the absolute 

temperatures of the two radiant surfaces, 

qi = a,@[T”“- T”-“‘I, (26) 

where cr is Boltzmann’s constant, A is the shield area 
and F is a factor accounting for the emissivities of 

the two surfaces. In general, F may also depend on 
7% and T”+ 11, 

The insulation irreversibility reaches its minimum 
when the (N - 1) shield temperatures are externally 
controlled such that 

as,,, -=O, aTW i= 1,2 ,._., N-l (27) 

In combination with equation (25) and (26), system 
(27) is sufficient for determining the optimum set of 
shield temperatures T’” or the optimum distribution 
of heat leak qi which yields the minimum rate of 
entropy generation Sre’i, N and A remaining fixed. 
This statement replaces the variational result (8) 
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developed in Section 1 for continuous insulations 
with t and A fixed. 

For a one-shield system, N = 2, the optimization 
program prescribed by equations (25)-(27) is rela- 
tively simple. If, for example, factor F is tempera- 

ture independent, combining equations (25))(27) 
leads to the following equation for the optimum 
shield temperature 

(28) 

Here, ti is the ratio TJt,)/Tl while r = 7”/7’, as in the 
preceding section. Equation (28) can be solved 

numerically for 7l as soon as T is specified: if t = 4, 
equation (28) yields ti = 2.505. 

In systems employing two or more parallel shields 
the use of design criterion (27) is increasingly 
laborious. A more expedient way of treating such 
cases is by using an approximate version of the 
variational principle (8). As the number of shields 
increases, the heat-transfer rate between two ad- 
jacent shields can be approximated by 

qi = a~~[7-(ii’-~(‘-lP] 

Assuming that N is sufficiently large, we can 
rearrange and integrate (29) over the N gaps formed 
by the N - 1 shields, 

N 
i 

‘: 4aFT3 
-= ------dT. (30) 

Comparing constraints (30) and (5) we discover that 
the group 4aFT3 plays the same role as the effective 
conductivity k employed in developing the general 
method for continuous insulations. Interestingly 
enough, the number of spaces created between 
shields plays the role of insulation thickness. Sub- 
stituting (4aFT3/N) for (k/t) in the general optimum 
expressed by equation (8) we determine the optimum 
distribution of heat leak across the radiation shields. 
Combining the qoP1 result with equation (29) yields 
the optimum shield temperatures 

, i= 1,2,...,N-l(31) 

where ~~ is shorthand for TJ,i,‘,/T,. In the limit N-t co 
the optimum shield temperatures dictated by ex- 
pressions (31) replace the temperatures obtained by 
solving system (27). Even in the extreme case of a 
one-shield insulation, for t = 4 result (31) yields t, 
= 2.726 which is reasonably close to the 2.505 
estimate based on solving the corresponding equa- 
tion from system (27). 

We have shown that insulation systems relying on 
radiation shielding exhibit an effective thermal 
conductivity factor k which varies, approximately, as 
T3. Examining the n = 3 curve of Fig. 2, we conclude 
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that insulation systems of this type are prime 
candidates for intermediate cooling (controlled tem- 

perature distribution) as a method of effectively 
upgrading their thermodynamic performance. 

4. INSULATIONS WITH INTERNAL 
HEAT GENERATION 

There are insulation systems in which the heat 

current q(T) is caused not only by the leakage of 

heat from the high temperature side T2 but also by 
heat generated internally. The scope of this section is 
to develop an equivalent form of design principle (8) 
this time for one-dimensional continuous insulations 
with internal heat generation. 

For example, consider the thermodynamic optimi- 

zation of an electric cable connecting two regions at 
different temperatures (Fig. 5). The cable is also a 
good thermal conductor which carries a sizeable heat 
leak. As pointed out in the beginning of this article, 

the direct approach to minimizing the heat leak and 
the irreversibility is by decreasing the thermal 
conductance, making the cable long and thin. This 

operation cannot be carried out indefinitely: there 
comes a point where the electrical resistance and the 
overall electrical performance of the cable become 
unacceptable. 

As in Sections 2 and 3, we are faced with the task 

of improving the thermal performance of an in- 
sulation with fixed geometry t and A. We accomplish 
this task by externally controlling the cable tempera- 

ture distribution in order to minimize the rate of 
entropy production in the cable. 

An energy balance and entropy flux analysis for 

the shaded dT element of Fig. 5 yields 

dq+dw = dr (32) 

ELECTRICAL 

I 1-l 

/GAS STREAM 

CABLE y _ 

FIG. 5. Optimum intermediate cooling effect for electrical 
cable connecting spaces at different temperatures. 
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Here, dw is the electrical power dissipated locally. In 
an electric cable, 

dw = p’z& 
A ’ 

where p and I are the electrical resistivity and the 
total electric current through a cross-section A, 
respectively. We should point out that in writing 
expression (33) we have neglected a term which 
accounts for the cross-coupling between the heat 
current 4 and the electric current I via the Onsager 

relations of irreversible thermodynamics [ 1, 14, 151. 
The thermoelectric effect caused by this coupling is 
usually neglected in electric cables for power appli- 
cations (high voltages and currents), as in the design 
example concluding this section. Expression (33) is 
the standard form for the rate of entropy production 

in a conducting medium with internal heat gener- 
ation [ 161. 

Proceeding on a path identical to the one followed 
in Section 2, we have to select the optimum heat leak 
function y,,,(T) which minimizes the integral 

sgrn = (35) 

subject to the geometry constraint (5). This is 
equivalent to minimizing the aggregate integral 

\ 

@= ++;$+i.L),, (36) 
q, 

subject to no constraints. The optimum distribution 
of heat leak is the result of solving the Euler 
equation 

with q’ = dq/dT. The solution is determined as soon 
as the system of Fig. 5 is known and the dissipation 
function w(T, q, q’) is specified. The variational 
principle derived earlier, equation (7) is the special 
case w = 0 of the more general result (37). 

Exumple 
Consider a cryogenic cable transmitting a large 

current between a room temperature current supply 
(T2 z 300K) and a large scale superconducting 
system bathed in liquid helium (Tl = 4 K). The cable 
physical properties may be modeled as k = k, and 
p = bT, where k, and b are both constant. This 
property model is reasonably good for high purity 
copper used in cryogenic cables (see, for example, 

[171). 
The group (dw/dT)/T appearing in the variational 

principle (37) is found by combining the property 
model with equations (34) and (1) 

;!$ = bpk. 
4 

Solving equation (37) in combination with equation 
(38) we get 

q,,,(T) = T(kA)‘:’ = (39) 

where A = i, + b12. 

The optimum temperature distribution is the same 
as in equation (12) an exponential to be preserved 
for any current level I. Using expressions (32) (39) 
and (10) we find the intermediate cooling effect 

(dr/dT),,,, required by the optimum. We point out 
that the required intermediate cooling can be 

provided very simply by forcing a coaxial gaseous- 
stream to flow from T, to T,. In order to achieve the 

optimum temperature distribution (12) the stream 
must have the right mass flowrate. The flowrate is 
found by substituting dgoi,, given by equation (39) 
dw given by (34) and (12) and dr = tic,dT into the 
energy balance (32). The optimum flow rate is 

(40) 

indicating precisely how much coolant is needed as 

the operating current I increases. Equation (40) 
constitutes the optimum “operating curve” for a 

cryogenic cable of fixed geometry expected to carry a 
current which may vary from time to time. 

Helium gas-cooled electrical cables have become a 
permanent feature of all large scale superconducting 
magnet systems [18]. However, the design of such 
cables has so far lacked the theoretical basis for 
systematic optimization as thermal insulation 
systems. 

5. CONCLUDING REMARKS 

Employing the concept of thermodynamic irre- 
versibility we were able to show that the true 
optimization of a thermal insulation system does not 
end with minimizing the heat leak by decreasing the 
thermal conductance Ak/t. At least as important to 
an efficient operation is control of the heat leak 
distribution q(T) by cooling (or heating) the in- 
sulation at intermediate temperatures. 

The general treatment of three different classes of 

insulation systems stressed the potential savings 
resulting from optimum control of heat leak distri- 
bution. The absolute temperature ratio z = T,/T, 

governs this potential. As shown in Fig. 2, in- 
termediate heat exchange is highly recommended in 
insulation systems exposed to large t’s, Moderate T 
applications in which the effective conductance 
increases sharply with the temperature will also 
register sizeable savings when designed with an 
optimally controlled distribution of heat leak. The 
use of second law concepts insures the general 
applicability of this design philosophy. 
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UN PRINCIPE VARIATIONNEL GENERAL POUR LES 
SYSTEMES D’ISOLATION THERMIQUE 

R&sum&On propose un nouveau concept pour I’optimisation des systtmes d’isolation thermique. La 
mtthode baste sur la reduction de l’irriversibihte thermodynamique, consiste en un controle externe de la 
variation de la fuite de chaleur a travers l’isolant. On montre que les economies utiles de puissance 
obtenues en appliquant cette philosophie sont importantes. Cette methode concerne en premier les 
systtmes d’isolation avec des rapports eleves de temperature absolue et ceux pour lesquels la conductivite 
thermique croit avec la temperature absolue. Trois classes de systimes d’isolation thermique sont 
optimisees a partir de cette procedure universehe: isolants continus monodimensionnel, isolants avec une 

distribution discontinue de temperature et isolants continus avec generation interne de chaleur. 

EIN ALLGEMEINES VARIATIONSPRINZIP FUR DIE AUSLEGUNG 
VON WARMEISOLIERUNGEN 

Zusammenfassung-In dieser Arbeit wird ein neues Konzept zur Systemoptimierung von Warmei- 
solierung vorgeschlagen. Die Methode basiert auf der Minimierung der thermodynamischen Irreversibili- 
taten und besteht darin, die Variation der Warmeverluste durch die Isolierung in Abhangigkeit von der 
Temperatur extern zu kontrollieren. Es wird demonstriert, dal3 bei Anwendung dieser Auslegungs- 
Philosophie bedeutende Energieeinsparungen festgestellt werden konnen. Bevorzugte Anwendungsfalle 
fur diese Methode sind Isolierungen mit grogen absoluten Temperatur-Verhaltnissen und solche, in 
welchen die Warmeleitfahigkeit mit der absoluten Temperatur zunimmt. Drei Klassen von Wlrmei- 
solierungen werden nach dieser universellen Auslegungsmethode optimiert: eindimensionale homogene 
Isolierungen, Isolierungen mit unstetiger Temperatur-Verteilung und homogenen Isolierungen mit 

inneren Warmequellen. 
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06Ukiti BAPMAUMOHHbIti IlPklHL&Nl KOHCTPYMPOBAHMX CMCTEMbI 
TEnJlOBOti M30JlR4MM 

Amo-raunr- B CT~W? npennaraercs HOBblil ~eTon OU'II(MH~~UMH CHcreMbl TerLlOBOfi ~30jlxU~r(, 

0cHoBaHHblR Ha MHHHMwaUwi repMonHHaMwfecKol Ue06paTwocTH. MeTon 3aKawqaeTcn B ocy- 

tuecTBneHw4 BHewteroKoH~p0.354 3a w~MeHew4eM Ten.qonoTepb c M3iveHeHNeM TeMnepaTypbr nonepeK 

cnofiH30nRUw. rloKasaao.rroc ~~o~oub~~;laH~~oro MeTona6bl.la UojlyqeHa cyuecTt3eHHan3~0~0~Mn 

3HeprHH. npeRJGieMbIti MeTOLl MOmHO UpMMeH9Tb B CJlyYae U30JlRUUOHHblX CMCTeM.MC"blTblBalOUIHX 

L,eiiCTBlre BLICOKHX 01.HOUJeHHti a6COJIW,ttbIX leM,,epi+,yp. d IdKW(e CMCreM, B KOrOpblX '$,,,EKTMBHall 

Te"JO"pOBOJHOCTb yReJMWBaeTCn C pOCTOM '3HaqeHMR :i6COJUOTHOti TCMnepiiTypbl. Ha OCHOBaHMM 

npenaaraeMor0 yHMBepca.3bHoro IIOLIXO;la BbliIeJleHO IpM KJPCCd Iell~011301RUllOHHblX CIICTCM: 

OnHOMepHaSl He"pepblBHa,l M3OJIRUMII. M30.'11"MII C pd3pblBOM HenpepblBHOCTH " pdC,lpeL,e.leHHH TeM- 

UepdTyp H HeUpepblBHan U?O.IRUMII C ISHyTpeHHeR reHepdUlieti Te".ld. 


